

The economic and social value of aircraft noise effects: a critical review of the state of the art

Diana Sanchez – Head of Knowledge Leadership, Anderson Acoustics, UK. Bernard Berry – Director, Berry Environmental, UK.

ACI EUROPE October 23th 2014 Brussels – UK

Contents

- 1. What the economic value of noise is?
- 2. Why it is important?
- 3. How to undertake monetisation?
- 4. Approaches for the economic valuation
- 5. Estimates for London Airports
- 6. Conclusions

What is the economic value of noise? Is it possible to valuate noise?

- Noise does not have a market price, but it has a value.
- Value are not the same as prices
- Values are a measure of benefit, utility, pleasure....provided by a good or service to a human being
- Prices depends on values. Values depends on judgments.
- Values are generally measured relative to a currency (money).
- Need of a monetary value for aircraft noise effects: positive and negative social consequences.

1. Why it is important?

- Only acousticians understand all the various metrics and descriptors for sound and its impacts.
- Provides a common language across all aspects of sustainable airports management
- Enables comparison and contextualisation of noise in sustainability.
- Input to inform decisions & policy making (CBA)
- ✓ Helps us to understand the balance between the benefits and negative effects of aviation.
- ✓ Pivotal role in ongoing UK Aviation Policy

3. How to undertake monetisation?

Acknowledgement of uncertainties and limitations

Approaches for economic valuation....

Review of the approach for each effect:

- Cardiovascular disease:
 - Acute myocardial infarction (AMI)
 - Hypertension (HT)
- Sleep Disturbance (SD)
- Annoyance (A)

	Association	Causality	Monetisation Method	
AMI	Sufficient	 2014 Babisch OR Road traffic OR= 1.08 per 10dB 55 - 77dB(A) L_{den} 	DALY DW: 0.405 72% of cases is fatal AMI risk: 0.0596% 	Analysis / Interpretation
нт	Sufficient	2012 WHO pooled curve • Aircraft noise • OR= 1.06 per 5dB • 47.5 -67.5 dB(A) L _{den}	 Harding 2013 /QALY HT outcomes: stroke dementia & AMI OR into relative risk HT prevalence >10% 	Analysis / Interpretation
SD	Sufficient	%HSD WHO from Miedema 45 - 70dB(A) L_{night} 	DALY • DW: 0.04 to 0.1	Analysis / Interpretation
Α	Sufficient	 % HA EU position paper & WHO 45 − 75 dB(A) L_{den} 	DALY • DW: 0.01 to 0.12	Analysis / Interpretation

Multiple uncertainties associated

An example: AMI

Association	Causality	Monetisation Method	
 Noise can be a risk factor for CVD Studies indicate links form exposure to high levels of AN 	 2014 Babisch OR Road traffic OR= 1.08 per 10dB 55 - 77dB(A) L_{den} From meta analysis of 12 studies 	 DALY (ERCD) Exposure data Estimate number of AMI cases (using D-R) YLL= Cases * mortality rate * average loss of life per death YLD= Cases * DW * surviving AMI likelihood 1 DALY = £ 60,000 (UK) 	 Correlation ≠ causality Confounders Preliminary / indicative results More research on aircraft noise
 Confounders and modifiers No evidence of effects on children 	 Causal link has no conclusively proven Uncertainties in pooling studies Confounders AMI: D-R for road traffic 	 DALY inherent limitations (e.g. do not capture other aspects of disease) 	

Pooled AMI OR Babisch 2006 vs. 2014. Road traffic noise

AMI cost estimations step by step

• Exposure data = L_{Aeq 16 Hrs}

69.5

• Number of AMI cases = Σ(ORAMI * Population) * AMI risk 55.5

Where:

- OR means Odds Ratio (Babisch one) estimated for each noise level
- AMI risk = 0.0596% (for UK estimated from mortality data and risk of death from an AMI)
- YLL = No. of AMI cases * AMI risk of death * average loss of life per death
- YLD= No. of AMI cases * DW * likelihood of surviving an AMI Where: DW = 0.405 according to WHO.
- Number of DALY =YLL + YLD
- Monetary cost of a DALY = number of DALY * €76,200

5. Estimates for London Airports: Heathrow, Gatwick & Stansted

- 2006 and 2011 DEFRA and CAA noise maps contours
- Lower threshold depended on availability of data:
 - AMI: 55dB L_{Aeq, 16 hrs.}
 - Annoyance: 55 dB(A) L_{den}
 - Sleep Disturbance: 50 dB(A) L_{night 8hrs}
- Contours use different data set for population. However, this was the only consistent available information across airports
 - 2006 noise maps are based on 2001 UK Census
 - 2011 are based on 2011 UK Census..
- Since data was available at 5dB steps, mid points values were chosen for each band.

Annoyance cost ranges from €200m to €1.2bn.. What does this mean?

IGCB(N) estimated the total cost from environmental noise in England as approx. €7bn; aircraft noise from London Airports represent between 4% & 17%

Change in cost between 2011 & 2006: Net benefit for AMI; marginal net cost for annoyance and sleep disturbance

Change in cost of aircraft noise effects 2011 vs. 2006

5. Conclusions: Monetisation process

- Monetisation of aircraft noise effects on health is a complex process. Consideration of uncertainties and limitations is a key part of it.
- ✓ There are no universally accepted methodologies
- Monetisation should be used to enhance understanding of trends rather than absolutely quantify a value of a specific health effect.
- No definite conclusions can be given on an absolute cost of aircraft noise around airports.

Challenge: How to aggregate different cost in relation to understanding the balance between positive an negative effects of aviation?

5. Conclusions: Application of monetary values

- \checkmark Provide input for decision making, They are NOT a decision itself.
- ✓ Precautionary principle deliver responsible airport's operations
- Analysis of monetary values should be contextualised to local conditions
- ✓ Could be used to guide mitigation and compensation budgets
- Sustainable noise management should be based on a generous and responsible approach
- Suggest to have an UK expert group for monetising aircraft noise effects.

Thank you for your kind attention!

Diana Sanchez – Head of Knowledge Leadership Anderson Acoustics dianasb@andersonacoustics.co.uk

Bernard Berry – Director Berry Environmental bernard@bel-acoustics.co.uk

