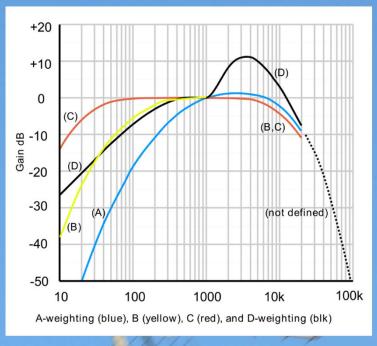
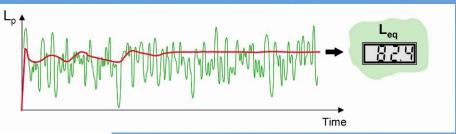

Aircraft and Air-traffic noise Metrics


Let's discover which metrics are used for...

Pressure and frequency

10 Log X	Х	
100	10000000000	
90	1000000000	
80	100000000	
70	10000000	
60	1000000	
50	100000	
40	10000	
30	1000	
20	100	
10	10	
0	1	
-10	0.1	
-20	0.01	
-30	0.001	
-40	0.0001	
-50	0.00001	
-60	0.000001	
-70	0.000001	
-80	0.0000001	
-90	0.00000001	
-100	0.000000000	


The state of the s

Laeq

The exact definition of L_{Aeq} in mathematical terms is:

$$L_{Aeq(T)} = 10 \log_{10} \frac{1}{T} \int_{0}^{t} \left(\frac{p_{A}(t)}{p_{o}} \right)^{2} dt$$

where:

 $L_{Aeq(T)}$ is the equivalent continuous A-weighted sound pressure level (dB(A)) measured over the time period T;

 $\rho_{\rm A}(t)$ is the instantaneous A-weighted sound pressure (N/m²) varying with time t,

The alternative and approximate formula to be used for calculating L_{eq} is:

 p_0 is the reference sound pressure (N/m²).

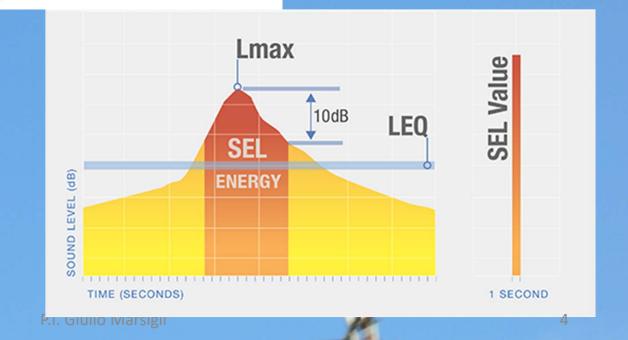
$$L_{\text{eq}} = 10 \log_{10} \left(\frac{1}{T} \left(t_1.10^{L_{1/10}} + t_2.10^{L_{2/10}} + \dots + t_n.10^{L_{n/10}} \right) \right)$$

where:

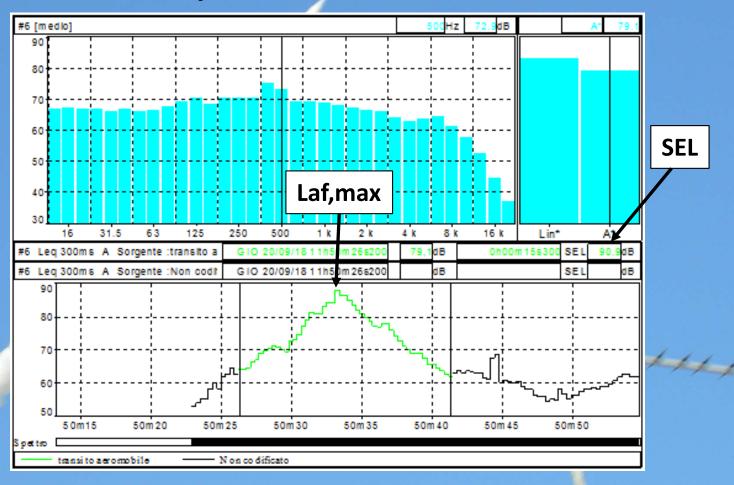
 L_{eq} is the equivalent continuous sound level (dB(A)) measured over the time period T.

 $L_1, L_2, L_3, \ldots, L_n$ are individual sound levels maintained for short periods of time;

 $t_1, t_2, t_3, \ldots, t_n$ are the durations associated with the respective sound levels.

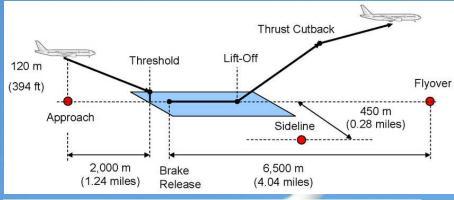


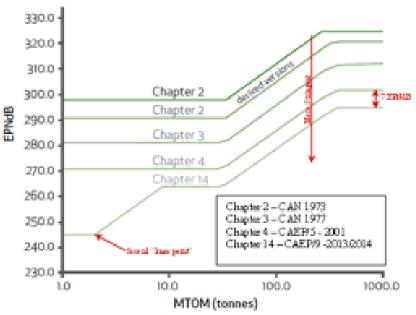
SEL

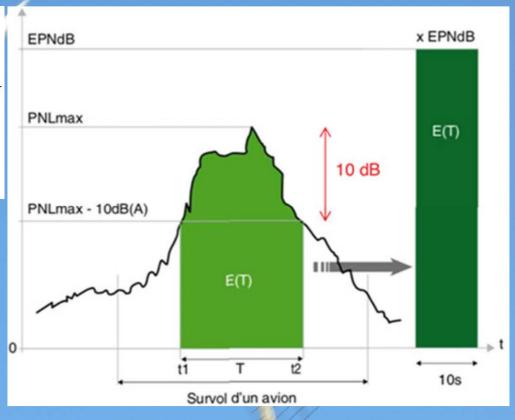

$$L_{\text{AE},T} = 10 \, \text{Ig} \left[\frac{\int_{t_1}^{t_2} p_{\text{A}}^{\,2}\left(t\right) \mathrm{d}t}{p_0^{\,2} T_0} \right] \mathrm{d}B = 10 \, \text{Ig} \left(\frac{E_{\text{A},T}}{E_0} \right) \mathrm{d}B = L_{\text{Aeq},T} + 10 \, \text{Ig} \left(\frac{T}{T_0} \right) \mathrm{d}B$$

where

- E_{A,T} is the A-weighted sound exposure in pascal-squared seconds over time interval T
- E_0 is the reference value given by $p_0^2 T_0 = (20 \,\mu\text{Pa})^2 \times (1 \,\text{s}) = 400 \times 10^{-12} \,\text{Pa}^2\text{s};$
- T is the measurement time interval, in seconds, starting at t_1 and ending at t_2 , and
- T_0 is the reference value of 1 s for sound exposure level.

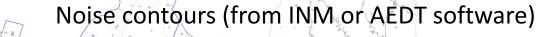



Ex. Of time history



From the source...

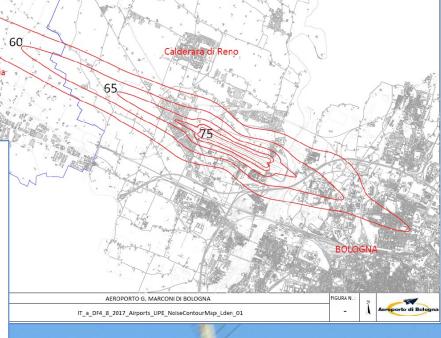
Noise certification ICAO



Territory managment

Exposed population Lden

Fascia-curve dB(A)	Popolazione esposta	
50-54	37000	
55-59	17000	
60-64	4300	
65-69	0	
70-74	0	
> 75	0	



L_{den} is calculated as:[5]

$$L_{den} = 10 \cdot log_{10} \left(rac{1}{24} \left(12 \cdot 10^{rac{L_{day}}{10}} + 4 \cdot 10^{rac{L_{consing} + 5}{10}} + 8 \cdot 10^{rac{L_{might} + 10}{10}}
ight)
ight)$$

Where the long-term average noise levels are defined as:

Part of the day	hours	penalty (dB)
day	07:00 - 19:00	0
evening	19:00 - 23:00	5
night	23:00 - 07:00	10

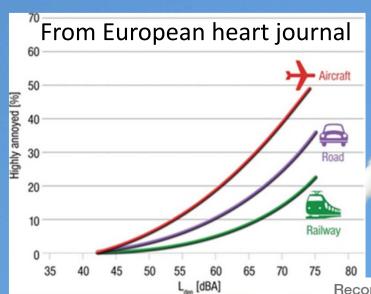
Territory managment

LVA - Italy

$$L_{VAd} = \left[\frac{1}{T_d} \sum_{i=1}^{N_d} 10^{\text{SELi}/10} \right] dB(A)$$

$$L_{VAn} = \left[\frac{1}{T_n} \sum_{i=1}^{N_n} 10^{\text{SELi}/10} \right] + 10 \text{ dB(A)}$$

$$L_{VAj} = 10log \left[\frac{17}{24} 10^{LVAd/10} + \frac{7}{24} 10^{LVAn/10} \right] dB(A)$$


$$L_{VA} = 10log \left[\frac{1}{N} \sum_{i=1}^{N} 10^{L_{VAj}/10} \right] dB(A)$$

Health assessments

W.H.O. Noise guidelines

Recommendations

For average noise exposure, the GDG **strongly** recommends reducing noise levels produced by aircraft below **45 dB** L_{den} , as aircraft noise above this level is associated with adverse health effects.

For night noise exposure, the GDG strongly recommends reducing noise levels produced by aircraft during night time below 40 dB L_{night} , as aircraft noise above this level is associated with adverse effects on sleep.

To reduce health effects, the GDG strongly recommends that policy-makers implement suitable measures to reduce noise exposure from aircraft in the population exposed to levels above the guideline values for average and night noise exposure. For specific interventions the GDG recommends implementing suitable changes in infrastructure.

Aircraft and Air-traffic noise Metrics

03/06/2024 - U.E.C.N.A. meeting

Thanks for your attention

P.I. Giulio Marsigli – Freelance Acoustic Technician (N° 5157 ENETECA List)